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Abstract

A perturbed hard-sphere-chain equation of state has been applied to calculate the liquid density of molten metals.

Two temperature-dependent parameters appear in the equation of state, which are universal functions of the reduced

temperature, i.e., two scale parameters are sufficient to calculate the temperature-dependent parameters. Generally, the

scale parameters can be obtained by fitting of the experimental data. In this work we have calculated the liquid density

of nine metals, including alkali metals, mercury, tin, lead, and bismuth, for which accurate experimental data exist in

the literature. The calculations cover a broad range of temperatures ranging from melting point close to the critical

point and at pressures ranging from the vapor-pressure curve up to pressures as high as 4000 bar. From about 800 data

points examined for the aforementioned liquid metals the average absolute deviation compared with experimental data

is 1.64%.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Knowledge of a molecular thermodynamic model

which can be suitably applied for representing volumet-

ric and equilibrium properties of molten metals is of

essential importance. Industrial applications of liquid

metals in high-temperature operations such as their

application in nuclear reactors, magnetohydrodynamic

power generation, Rankine cycles, solar power plants,

and ion propulsion systems necessitate an increasing

need for knowledge of accurate volumetric and thermo-
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dynamic data. Due to the difficulties associated with

experimental measurements, a few experimental data

are available on liquid metals, especially at very high

temperatures and pressures. In these circumstances there

is a growing need for an accurate theoretical model to

supplement the available experimental data. It is obvi-

ous that any such model should have a statistical–

mechanical basis.

In recent years the work on the prediction of proper-

ties of a system of hard-spheres has been a frequent issue

of modern molecular thermodynamic theories of fluids

and fluid mixtures [1–3]. The influence of the attrac-

tions and the softness of repulsions are considered as

perturbations in the statistical–mechanical perturba-

tion theories to predict the equation of state for real flu-

ids and their mixtures. As an example of a successful
ed.
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statistical–mechanical analytical equation of state we

may address to the equation of state derived by Song

and Mason for pure fluids [4,5] and later extended to

their mixtures [6,7]. This equation of state has been uti-

lized to predict the volumetric and thermodynamic

properties of a wide variety of fluids and fluid mixtures

[8–11]. Previously this equation of state has been applied

to liquid alkali metals in saturation [12] and compressed

states [13].

The hard-sphere chain model, where a chain mole-

cule is modeled by a series of freely jointed tangent hard

spheres, is another alternative used as the reference sys-

tem in statistical–mechanical perturbation theories for

chain-like molecular fluids to replace much simpler

hard-sphere reference system in most existing perturba-

tion theories. Here molecular segment is a sphere of

unchangeable diameter and chain molecule is a series

of hard spheres. These assumptions simplify the mathe-

matical modeling of both simple (spherical) and complex

(chain-like) molecules. In 1994 Song et al. [14] proposed

a perturbed hard-sphere-chain equation of state which is

in better agreement with computer simulation results

than those of the previous hard-sphere-chain equations

of state. It is the purpose of this work to apply this equa-

tion of state to liquid metals.
2. Theory

Song et al. [14] proposed a perturbed hard-sphere-

chain equation of state, which can show the behavior

of long-chain molecules as well as the small ones.

According to the perturbed hard-sphere-chain theory,

the molecule is considered to be constituted by chains

of freely jointed tangent hard bodies, or segments. This

model takes into account the Chiew [15] equation of

state for hard-sphere chains as the reference system

and adds a van der Waals attraction term as the pertur-

bation. The equation of state parameters are related to

the intermolecular potential by the method of Song

and Mason [4]. In the final form the perturbed hard-

sphere-chain equation of state reads as

p
qkT

¼ 1 þ r2bqgðdþÞ � ðr � 1Þ½gðdþÞ � 1� � r2aq
kT

; ð1Þ

where p is the pressure, q is the number (molar) density,

d is the hard-sphere diameter, g(d+) is the pair radial dis-

tribution function of hard spheres at contact, and kT is

the thermal energy per one molecule. Three segment-

based parameters appear in Eq. (1); r is the number of

segments per molecule, a reflects the attractive forces be-

tween the nonbonded segments, and b is the van der

Waals covolume per segment. The analytical expression

used for g(d +) is that proposed by Carnahan and Star-

ling [16], i.e.,
gðdþÞ ¼ 1 � g=2

ð1 � gÞ3
; ð2Þ

where g is the packing fraction defined as:

g ¼ rbq
4

: ð3Þ

In Eq. (1) the first three terms represent the Chiew

equation of state [15] for hard spheres and the last term

represents the perturbation term. The parameter b is a

function of the hard sphere diameter through the follow-

ing expression:

bðT Þ ¼ 2p
Z r

0

1 � 1 þ u0

kT

� �
expð�u0=kT Þ

h i
R2 dR; ð4Þ

where R is the separation distance between segment cen-

ters, u0(R) is the repulsive branch of the potential energy

function, u(R), and r indicates the location of minimum

in u(R). The parameter a is related to the second virial

coefficient, B, and the van der Waals covolume, b, as:

BðT Þ ¼ b� a
kT

¼ 2p
Z 1

0

½1 � expð�u=kT Þ�R2 dR: ð5Þ

According to Eqs. (4) and (5) the knowledge of inter-

molecular pair potential energy function is required to

obtain the temperature-dependent parameters of the

equation of state, but this is seldom accurately known

for most physical systems of interest. It is shown that

[5] the temperature-dependent parameters, a(T) and

b(T), are insensitive to the details of the potential energy

function and when scaled in terms of suitable reducing

constants, they are universal function of the reduced

temperature. Therefore the parameters a and b can be

written as [14]

aðT Þ ¼ 2p
3

r3eF aðkT=eÞ ð6Þ

and

bðT Þ ¼ 2p
3

r3F bðkT=eÞ; ð7Þ

where e is the depth of minimum in potential energy

curve and Fa and Fb are universal functions of the re-

duced temperature. Fa and Fb can be written as the fol-

lowing empirical formula [17]:

F aðkT=eÞ ¼ a1 exp �a2

kT
e

� �
þ a3 exp �a4

kT
e

� �3=2
" #

ð8Þ
and

F bðkT=eÞ ¼ b1 exp �b2

kT
e

� �
þ b3 exp �b4

kT
e

� �3=2
" #

;

ð9Þ

where the coefficients ai and bi are determined by fitting.

Generally, the universal functions Fa and Fb are calcu-

lated by fitting of the experimental pvT data of a simple



Table 1

Optimized parameters for metals

Metal r (nm) e/k (K)

Lithium 0.2671 3097.0
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fluid like Ar, for which r = 1. In this work we have uti-

lized this equation of state to calculate liquid density

of molten metals including alkali metals, mercury, tin,

lead, and bismuth.
Sodium 0.3238 2077.9

Potassium 0.4001 1851.4

Rubidium 0.4280 1741.9

Cesium 0.4609 1645.3

Mercury 0.2956 7413.1

Tin 0.2835 2312.8

Lead 0.2952 2398.0

Bismuth 0.2951 1695.5
3. Results and discussion

As it is mentioned in the previous section, the tem-

perature-dependent parameters of the equation of state,

a and b, can be calculated by knowing the full potential

energy curve, or more simply, using the empirical for-

mula presented by Song and Mason [17]. For ordinary

fluids, the constants in Eqs. (8) and (9) for Fa and Fb

are fitted to the experimental data for a fluid like Ar,

for which r = 1. Once this is performed, the equation

of state is applicable to other fluids by adjusting three

parameters, e, r, and r.

Fluid alkali metals are examples of systems interact-

ing via two potential types. In fact they can interact

through singlet- and triplet-type potentials [18–20]. This

fact complicates the calculation of temperature-depen-

dent parameters of the equation of state via knowing

the potential energy function, Eqs. (4) and (5), or conse-

quently the empirical formula by Song and Mason [17]

fitted for Ar. In this work we have adapted the same

mathematical form for parameters Fa and Fb as pro-

posed by Song and Mason [17], Eqs. (8) and (9), but

the coefficients ai and bi have been calculated using the

experimental data for alkali metals. In other words,

the effect of interaction via singlet- and triplet-type

potentials is taken in to account in an average way as

a mean spherical potential. All metallic systems are con-

sidered as monatomic systems, r = 1. Therefore, know-

ing two adjustable parameters e and r are sufficient to

predict the equation of state for liquid metals.
Table 2

The calculation results for the saturated liquid density of metals

Metal This work

DT (K) NPa AADb (%

Lithium 453.7–3200 26 1.14

Sodium 371–2200 20 1.89

Potassium 336.7–2100 19 1.97

Rubidium 312.5–2000 17 2.22

Cesium 301.6–1900 17 2.14

Mercury 234.3–1073.15 29 0.79

Tin 623.15–873.15 6 1.80

Lead 669.15–969.15 7 1.78

Bismuth 642.15–872.15 6 2.08

Overall 147 1.62

a NP represents the number of data points examined.
b

AAD ¼ 100=NP
XNP
i¼1

jqi;Cal: � qi;Exp:j=qi:Exp::
We have used experimental data for molten potas-

sium to determine the following values for coefficients

in Eqs. (8) and (9):

a1 ¼ 1:058393 a2 ¼ �0:879380

a3 ¼ 0:609445 a4 ¼ �0:314038

b1 ¼ 0:798019 b2 ¼ 0:908086

b3 ¼ 0:521304 b4 ¼ �0:407266:

Knowing the values of ai and bi, we can predict the

equation of state for liquid metals by adjusting e and

r. The calculated values of e and r are listed in Table

1 for metals studied in this work. The best available

experimental data for liquid alkali metals [21–26] have

been used to test the predictive power of the present

equation of state. The experimental data for molten al-

kali metals cover a broad temperature range from melt-

ing point close to the critical point and pressures from

saturated vapor pressure to 1000 bar. Also the equation

of state has been tested against the experimental data for

mercury [26,27], tin, lead, and bismuth [28]. The calcu-

lated results for the saturated liquid densities are listed

in Table 2 as average absolute deviation. The results
Previous works [12,29]

) DT (K) NP AAD (%)

800–2000 13 2.99

450–1450 11 3.09

336.7–1150 9 3.05

312.5–1050 8 3.11

301.6–1000 8 3.21

243.15–723.15 10 2.98

59 3.06



Table 3

The calculation results for the compressed liquid density of metals

Metal Dp (bar) This work Eslami et al. [13]

DT (K) NP AAD (%) DT (K) NP AAD (%)

Lithium 100–1000 500–2000 94 1.20 500–1200 45 2.38

Sodium 100–1000 400–2000 97 1.33 400–1200 48 2.25

Potassium 50–1000 400–1900 122 1.72 400–1200 48 1.96

Rubidium 50–1000 400–2000 112 1.63 400–1000 43 1.88

Cesium 50–1000 400–2000 119 1.81 400–1000 43 2.16

Mercury 0–4000 290.15–427.15 80 2.06

Tin 1000–2000 722.15–931.15 9 3.46

Lead 1000–3000 669.15–921.15 12 1.58

Bismuth 1000–2000 667.15–869.15 7 1.48

Overall 652 1.64 227 2.13
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of the present calculations for the saturated liquid den-

sity of alkali metals and mercury are also compared with

the previous equations of state by Ghatee and Boushehri

[12] and Mehdipour nad Boushehri [29], respectively.

The equation of state is also employed to calculate the

compressed liquid density of metals over a wide pressure

range. The results are reported in Table 3 and are com-

pared with our previous calculations [13]. In order to

show how the equation of state passes through the

experimental points, deviation plots for the saturated li-

quid density of lithium, potassium, cesium, and mercury

are shown in Fig. 1. Also the deviation plots for the cal-

culated liquid density of liquid potassium, as a typical

example, compared with experiment at three isobars

are plotted in Fig. 2. Comparison of the tabulated re-

sults in Table 2 shows that the present work is more

Fig. 2. Deviation plot for the predicted compressed liquid

density of Cs at 100 bar (�), 600 bar (h), and 1000 bar (n)

compared with experiment. The open markers show the results

of the present equation of state and the corresponding filled

ones are from the previous equation of state [13].
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Fig. 1. Deviation plot for the predicted saturated liquid density

of Li (�), K (h), Cs (n), and Hg (s) compared with

experiment. The open markers show the results of the present

equation of state and the corresponding filled ones are from the

previous equations of state for alkali metals [12] and mercury

[29].
accurate and covers a wider temperature range than that

of previous works [12,29]. For the present equation of

state the results in Fig. 1 shows that 80% of points are

located between ±2% of experimental data, while

22.5% of the predicted results from the previous equa-

tions of state [12,29] are located in this interval. Also

the results of Table 3 and Fig. 2 for compressed liquid

metals show that the present equation of state works

better than our previous one [13] and its accuracy re-

mains good over an extended temperature range.

This work shows that the equation of state for ordin-

ary fluids can be extended to include liquid metals. Two

adjustable parameters, e and r, are required for this pur-

pose, instead of three adjustable ones for ordinary fluids.

There is no need to know the exact potential energy

curve for calculation of the temperature-dependent

parameters. Although the electrons in metals interact
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with each other and with atomic cores through a long

range potential, but due to the nature of bonding in met-

als the total electronic potential than an electron sees is

almost constant from point to point. Therefore it is rea-

sonable to accept that many of the physically observable

properties of metallic systems are not so sensitive to the

details of the electron–electron and electron-core inter-

actions. For example, due to ns1 electronic configuration

of alkali metals these metals interact via two singlet and

triplet type potentials. The results of this work show that

even for these metals the present equation of state is

applicable as well, i.e., the influence of the two potential

types on them is taken into account in an average way in

parameters a and b of the equation of state. Moreover,

the parameters a and b are not dependent on the details

of the potential energy function. Of course, it is worth

considering that some of the inherent errors hidden in

this method for calculation of a and b can be somewhat

compensated by adjusting e and r. Although the present

equation of state is compared against the experimental

data for nine metals, lack of experimental data on other

metals prevents us to check its accuracy for the predic-

tion of their pvT properties.
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